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DETERMINATION OF THERMOPHYSICAL CHARACTERISTICS OF

MATERTATLS AS FUNCTIONS OF TEMPERATURE
G. A. Surkov?

ABSTRACT
The paper attemps to determine thermophysical characteristics

as functions of temperature.

Let us consider a symmetrical body (the treatment for asymmetrical bodies is
similar). /22X

Assuming the density p of the body to be independent of temperature, and the
thermal conductivity A and heat capacity c to be dependent on the space coordinate

and time, the problem can be mathematically formulated as follows
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¥Numbers given in margin indicate pagination in original foreign text.

lPresented by A. V. Lykov, Member of the BSSR Academy of Sciences.
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In addition, let us assume (this can always be done experimentally) that the

temperatures are given at certain points, i.e.,

TN, t)v=o = Fa(®), \ (1)
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From the known functions (7-9) we can readily construct the temperature

field. We shall seek it in the form
T(N,9) =a{yN +bE)N +Fo (1), (10)

Using conditions (7—9), we obtain an expression for the temperature field
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From equation (11), we .have
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Substituting (12) and (13) into the right-hand part of equation (1), we

obtain
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Using boundary conditions (7) and (9), we obtain a system of two equations for

determining functions A(1) and B(t), i.e.,
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whence we have
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Substituting the values of functions A(t) and B(7) into (14) and solving

the ordinary differential equation with initial condition (2), we shall have
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After integrating, we can represent expression (22) in the form
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The unknown coefficients will be determined as follows.
We take function 3(N, 1) at point N = R/2 at instants of time Tj(j =1,
..2m) and set it equal to the right-hand part of equation (23) at the cor-
responding point. We then obtain a system of 2m algebraic equations for deter-

mining amp and bm
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Substituting the known values of bmp into equation (5) and considering (21), we

obtain the value of the thermal diffusivity at point R
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The vafue of the thermal conductivity will be determined from condition (L) and

expression (11)
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In the case where the value of the thermal flux g(t) is unknown, the thermal
conductivity coefficient at point R can be determined as follows. From (5) and
(6), excluding pc(N,T), we have
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Let 10 be the time lag of the action of the thermal flux at point N = 0. Then,

integrating (27) ¥#ith respect to N, for T = 70 we have

MV, 7o) = A.exp[ ey dN] (30)

where )\o is the thermal conductivity coefficient at the initial temperature and
is assumed to be known.

From (30) we can readily obtain the values of A; at point R for 1t = 10, i.e.,

A (R, %) = A €Xp [M.ﬂv] (31)
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The temperature at point N = O, equal to the temperature T(R, 1p), will
reach (?) at instant 71. Integrating (27) with respect to N, at instant T = T

we obtain Ao(R, T1), i.e.,

Continuing, we shall similarly have

(N Tn—l,
A (R, teeq) =21 8Xp [ P, o) N]L-R | (33)

Thus, from (30-33) we can obtain a precise dependence of the thermal con-

ductivity coefficient on the temperature.

As usual, the value of the heat capacity will be

" AR
c(Rx) = R | (54)
. Pa(R,T) §

In order to obtain the dependence of the thermal diffusivity and thermal
capacity on the temperature, we break up the time segment (o, Tk) into n intervals

ATn. Taking the values of the thermophysical characteristics at instants T and

correspondingly the values of the temperature Q(R,Tn),we plot the curves which will

express their dependence on the temperature.
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